
272 CHINESE OPTICS LETTERS / Vol. 4, No. 5 / May 10, 2006

Supervised non-negative matrix factorization based latent
semantic image indexing

Dong Liang (��� ���), Jie Yang (��� ���), and Yuchou Chang (���������)

Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai 200240

Received November 2, 2005

A novel latent semantic indexing (LSI) approach for content-based image retrieval is presented in this
paper. Firstly, an extension of non-negative matrix factorization (NMF) to supervised initialization is
discussed. Then, supervised NMF is used in LSI to find the relationships between low-level features and
high-level semantics. The retrieved results are compared with other approaches and a good performance
is obtained.
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Latent semantic indexing (LSI) is a powerful tool to
search the mapping from low-level features to high-level
semantics in image retrieval[1]. In traditional LSI, singu-
lar value decomposition (SVD) is used to create a lower
dimensional semantic space. However, it is difficult to
interpret negative components in decomposed matrices
considering they represent feature frequency. On the
other hand, the latent semantic space derived by SVD
is orthogonal, which implies that all query topics are
orthogonal. In practice, it is quite common that the
high-level semantics comprising an image collection are
not completely independent of each other[2].

Recently, an unsupervised technique non-negative ma-
trix factorization (NMF) was introduced[3] for searching
a reduced representation of global data. In our paper,
a supervised NMF (SNMF) is proposed. Furthermore,
SNMF is used in LSI as an alternative of SVD to find
the relationships between low-level features and high-
level semantics. The motivation of introducing NMF to
LSI for image retrieval is that image data and features
are non-negative and NMF is based on non-negative re-
strictions. Moreover, the latent semantic space derived
by NMF does not need to be orthogonal, and each image
is guaranteed to take only non-negative values in all the
latent semantic directions. It means that each axis in the
space derived by the NMF has a much more straightfor-
ward correspondence with each semantic class than in the
space derived by SVD[2]. Lastly, NMF is advantageous
for applications involving large matrices because NMF
computation is based on the simple iterative algorithm.

NMF is an outstanding method to decompose a
non-negative matrix into two non-negative matrices as
V ≈ WH . The dimensions of basis matrix W and en-
coding matrix H are n× r and r ×m respectively. Rank
r is chosen to satisfy (n + m)r < nm.

In order to demonstrate the difference between NMF
and SVD, we apply NMF and SVD to one data set.
This dataset consists of two clusters, and each cluster
contains ten samples. NMF is used with r = 2. We
plot the dataset and the semantic directions found by
NMF and SVD in Fig. 1, where the difference between
NMF and SVD is well represented. Firstly, NMF does
not require the derived lower dimensional space to be

orthogonal, and it guarantees that each sample takes
only non-negative values in all the semantic directions.
While in the SVD space, each sample may take negative
values in some of the directions. Secondly, each direc-
tion corresponds to a semantic class in the NMF space,
and all the samples belonging to the same semantic class
spread along the same direction. While the orthogonal
requirement by SVD makes the derived latent seman-
tic directions less likely to correspond to each of the
clusters and does not provide a direct indication of the
data partitions[2]. From the analysis above, in addition
to the non-negativity, another property of NMF is that
the columns of W tend to represent clusters of semanti-
cally relative elements as used in the semantic analysis
of a corpus of encyclopedia articles[3]. Therefore, W de-
scribes a hidden reduced semantic space and H contains
the semantic features of the samples in data matrix V .

Fig. 1. The dataset and semantic directions found by NMF
(a) and by SVD (b).
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Problem that one might encounter in application of
standard NMF is random initialization because the solu-
tion of NMF is always a local optimal solution. However,
the entirely random initialization is time consuming in
an average sense because it provides a random starting
point for searching a parts-based representation of global
data. Compared with random initialization, structured
initialization[4] provides a most restrictive starting point
and cannot pull the factorization out once the algorithm
plunges into a local minimum. Maybe a supervised but
flexible initialization is more appropriate. The idea is to
initialize W with representative vectors of each known
semantic class in learning stage and randomly initial-
ize H for less restrictive. Concept vector[5] is used to
represent each semantic cluster and initialize each col-
umn of W with three reasons. Firstly, concept vector is
non-negative; secondly, based on the Cauchy-Schwarz in-
equality, in an average sense, all of the vectors in a cluster
are closer to the concept vector than any other vector, as
measured by cosine similarity; thirdly, for a given clus-
ter, the only basis feature obtained by NMF when r is
configured to be 1 equals concept vector of given cluster.

We design an experiment to explore the progression of
basis images in iterating for three initializations. ORL
face database is used because the progression of W can
be better visualized by seeing the changes made in the
basis faces, where W consists of 40 basis faces. Figure
2 shows the progression of 40 basis images after 0, 10,
and 100 iterations. The faces on the top, middle and
bottom rows are those obtained using random initializa-
tion, supervised initialization, and structured initializa-
tion, respectively. We can see that supervised initial-

ization has a head start at beginning to emphasize, and
extract facial components compared with other initializa-
tions. Conversely, we cannot see any emphasized parts
in basis faces for structured initialization after 100 iter-
ations. Figure 2 indicates that structured initialization
maybe violate the original idea of NMF and supervised
initialization maybe more appropriate. Another advan-
tage benefited from the supervised initialization is that
when initialize W with concept vectors, the lower rank
r is determined simultaneously equaling the number of
semantic categories in the database.

Here, we give a description of SNMF-based latent se-
mantic image indexing approach for image retrieval as-
suming k semantic categories in image set.

Learning Stage: Firstly, low-level features of images in
the database are extracted to construct a feature-image
matrix V p (say of size n × m). Then, concept vector
of each semantic category is calculated to form concept
vector matrix C = {c1, c2, · · · , ck} (say of size n × k).
Lastly, SNMF is used to factorize V p into WP andHP ,
where WP is initialized by C and HP is random initial-
ized.

Retrieval Stage: For query image q, low-level features
V q are projected into WP and the latent semantic fea-
ture Hq is extracted using NMF-projecting algorithm[6].
After measuring the similarity between semantic features
of the query image and each image in the database, some
top images are shown to the user.

The image database used consists of 1906 images of
74 semantic categories. Hue-saturation combined histo-
gram feature[7] is used because each dimension represents

Fig. 2. Progress for the random initialization after 0, 10 and 100 iterations respectively (a)—(c), for the supervised initialization
(d)—(f), and for the structured initialization (g)—(i).
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the frequency of each component emerging. Average-
retrieval-rank[8], which is a variation on recall, is used
as evaluation criterion. The reason for selecting average-
retrieval-rank as criterion is that it is independent of the
number of returned images. For the same database, the
smaller the average-retrieval-rank is, the more effective
the approach is.

Firstly, we design an experiment to evaluate the
effectiveness of standard NMF-based LSI approach,
where SVD-based LSI approach and the approach with-
out LSI are used as the baselines. Figure 3 shows average-
retrieval-rank, as a function of the reduced dimensions
when the number of iterations is fixed to 200. As seen

Fig. 3. Average-retrieval-rank as a function of reduced di-
mensions (200 iterations).

Fig. 4. Average-retrieval-rank as a function of number of it-
erations (rank r was fixed to 74).

from Fig. 3, standard NMF-based LSI approach performs
better than other approaches. Note that no special ini-
tialization for NMF involved in this experiment.

Another experiment is designed to evaluate three ini-
tializations. Figure 4 shows the average-retrieval-rank, as
a function of the iteration number when the reduced di-
mension is fixed to 74. We can see that the performance
of supervised initialization is superior to that of struc-
tured initialization and random initialization. The in-
tegrated performances on two experiments indicate that
the approach of supervised NMF is the better choice for
LSI than others.

In conclusion, an extension of NMF to supervised ini-
tialization is proposed. Supervised NMF provides a re-
strictive and flexible starting point of searching reduced
representation of global data. In addition, SNMF is used
in LSI as an alternative of SVD to extract the latent se-
mantic structure of images. Experimental results show
that the proposed approach performs better than other
approaches.
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